Part Number Hot Search : 
TL102 KTD1028 DS324T9 2030C 2645TT 5110F3 3K7002 B1422BC1
Product Description
Full Text Search
 

To Download PS9634L-E4 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
PHOTOCOUPLER
PS9634,PS9634L
POWER TRANSISTOR DRIVING BASE AMPLIFIER BUILT-IN TYPE PHOTOCOUPLER
DESCRIPTION
The PS9634 and PS9634L are optical linkage devices mounting a GaAs infrared ray LED on the light emitting side (input side) and a photo diode and a signal processing circuit on the light receiving side (output side) on one chip. They can directly drive a power transistor of 15 to 20 A class used for such as an inverter control air conditioner or general purpose inverter. The PS9634L has a surface mount type lead.
FEATURES
* High instantaneous common mode rejection voltage (CMH = -1 000 V/s MIN., CML = 1 000 V/s MIN.) * High supply voltage (VCC = 18 V) * High-speed response (tPHL, tPLH = 5 s MAX.) * High output current (IO1 = 0.5 A (DC), IO1P = 1.0 A (pulse) ) * Taping product name (PS9634L-E3, E4)
APPLICATIONS
* Inverter control air conditioner * General purpose inverter
The information in this document is subject to change without notice.
Document No. P12686EJ4V0DS00 (4th edition) Date Published February 1998 NS CP(K) Printed in Japan
The mark * shows major revised points.
(c)
1992
PS9634,PS9634L
PACKAGE DIMENSIONS (in millimeters)
PS9634
10.16 MAX. 8 7
Tr.1
TOP VIEW
Signal processing circuit 6
Tr.2
5
1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC
1
2
3 7.62 6.50.5
4
2.8 MIN. 4.55 MAX.
0.65
3.8 MAX.
1.27 MAX.
0.500.10 0.25 M
0 to 15
2.54
1.34
PS9634L
10.16 MAX. 8 7
Tr.1
TOP VIEW
Signal processing circuit 6
Tr.2
5
1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC
1
2
3 7.62
4
3.8 MAX.
1.27 MAX. 1.340.10 0.25 M 2.54
0.90.25 9.600.4
2
0.05 to 0.2
6.50.5
PS9634,PS9634L
ABSOLUTE MAXIMUM RATINGS (TA = 25 C, unless otherwise specified)
Parameter Diode Forward Current (DC) Reverse Voltage Peak Forward Current Detector Supply Voltage Output Current (O1) Peak Output Current (O1) Output Current (O2) Peak Output Current (O2) Output Voltage (O1) Power Dissipation Isolation Voltage
*2 *1
Symbol IF VR IFM VCC IO1 IO1P IO2 IO2P VO1 PO BV PT TA Tstg
Ratings 30 6.0 1 18 0.5 1.0 0.8 2.0 18 500 5 000 550 -20 to +80 -55 to +150
Unit mA V A V A
V mW Vr.m.s. mW C C
Total Power Dissipation Operating Ambient Temperature Storage Temperature
*1 PW = 100 s, Duty Cycle = 1 % *2 AC voltage for 1 minute at TA = 25 C, RH = 60 % between input and output
RECOMMENDED OPERATING CONDITIONS
Parameter Input On Current Supply Voltage Output Current (O1) Output Current (O2) Operating Ambient Temperature Symbol IFLH VCC IO1 IO2 TA 0 25 50 C MIN. 6 5.4 0.1 0.2 TYP. 8 MAX. 10 15 0.3 Unit mA V A
TRUTH TABLE
LED ON Tr. 1 Tr. 2 ON OFF OFF OFF ON
3
PS9634,PS9634L
ELECTRICAL CHARACTERISTICS (TA = -20 to +80 C, unless otherwise specified)
Parameter Diode Forward Voltage Reverse Current Terminal Capacitance Detector Supply Voltage Low Level Output Voltage (O1) High Level Output Voltage (O2) Low Level Output Voltage (O2) Leakage Current (O1) Leakage Current (O2) High Level Supply Current Symbol VF IR Ct VCC VO1L VO2H VO2L IO1L IO2L ICCH VCC = 6 V, IO1 = 0.4 A, RL2 = 10 , IF = 5 mA VCC = 6 V, IO2 = -0.4 A, IF = 5 mA VCC = 6 V, IO2 = 0.5 A, IF = 0 mA VCC = 13 V, IF = 0 mA VCC = 13 V, IF = 5 mA TA = 25 C VCC = 6 V, IF = 5 mA Low Level Supply Current ICCL TA = 25 C VCC = 6 V, IF = 0 mA Coupled Input On Current (L H) IFLH TA = 25 C VCC = 6 V, RL1 = 5 , RL2 = 10 Isolation Resistance Propagation Delay Time (L H) Propagation Delay Time (H L) Instantaneous Common Mode Rejection Voltage (Output: High) Instantaneous Common Mode Rejection Voltage (Output: Low) RI-O tPLH tPHL CMH TA = 25 C, VCM = 600 V (peak), IF = 5 mA, RL1 = 470 , RL2 = 1 k, V02H = 2 V TA = 25 C, VCM = 600 V (peak), IF = 0 mA, RL1 = 470 , RL2 = 1 k, V02L = 0.5 V -1 000 V/s 7 RH = 40 to 60 %, TA = 25 C VCC = 6 V, IF = 5 mA, TA = 25 C RL1 = 5 , RL2 = 10 0.3 0.2 10
11
Conditions IF = 5 mA, TA = 25 C VR = 5 V, TA = 25 C V = 0 V, f = 1.0 MHz, TA = 25 C
MIN.
TYP. 1.1
MAX. 1.4 5
Unit V
Fig.
A
pF
30 5.4 0.25 4.5 5.0 0.25 0.40 100 100 8 12 16 15 18 22 1.5 3.0 5.0 15 0.40
V V V V 1 2
A A
mA
3 4
mA
mA
5
3 5
s
6
CML
1 000
V/s
4
PS9634,PS9634L
MEASUREMENT CIRCUITS FOR ELECTRICAL CHARACTERISTICS
Fig. 1 VO1L
IF 1 2 3 4 8 VCC 7 RL2 = 10 6 5 - V VO1L + IO1 3 4 2 IF 1
Fig. 4 IO2L
8 VCC 7 6 5 A IO2L
Fig. 2 VO2H
IF 1 2 3 4 8 VCC 7 6 5 - V VO2H + IO2 3 4 2 IF variable 1
Fig. 5 IFLH
8 VCC 7 6 5 - V VO2 + RL2 = 10 6V RL1 =5
Fig. 3 IO1L
IF 1 2 3 4 8 VCC 7
(tr, tf = 0.01 s) VIN 1
2
Fig. 6 tPLH, tPHL
8 VCC 7
51
6 5 A IO1L
RL2 = 10
3 4 6 5 VOUT
RL1 = 5
VIN VOUT tPLH
50 % 50 % tPHL
Fig. 7 CMH, CML
IF
1 SW 2 3 4 + VCM - 7 8 600 V VCM GND CMH (IF = 5 mA) 2V VO2 0.5 V CML (IF = 0 mA)
VCC RL2 = 1 k
6 5
VO2 RL1 = 470
5
PS9634,PS9634L
TYPICAL CHARACTERISTICS (TA = 25 C, unless otherwise specified)
MAXIMUM FORWARD CURRENT vs. AMBIENT TEMPERATURE
40
Maximum Forward Current IF (mA) Power Dissipation PO (mW)
POWER DISSIPATION vs. AMBIENT TEMPERATURE
600 500 400 300 200 100
30
20
10
0
25
50
7580
100
0
25
50
7580
100
Ambient Temperature TA (C)
Ambient Temperature TA (C)
TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE
Total Power Dissipation PT (mW)
FORWARD CURRENT vs. FORWARD VOLTAGE
100 TA = +100 C +75 C +50 C +25 C 0 C -25 C -55 C
Forward Current IF (mA)
600 550 500 400 300 200 100
10
1
0.1
0
25
50
7580
100
0.01 0.6
0.8
1.0
1.2
1.4
1.6
Ambient Temperature TA (C)
Forward Voltage VF (V)
NORMALIZED INPUT ON CURRENT vs. SUPPLY VOLTAGE
1.5
Normalized Input On Current IFLH Normalized Input On Current IFLH
NORMALIZED INPUT ON CURRENT vs. AMBIENT TEMPERATURE
1.3 Normalized to 1.0 at TA = 25 C, VCC = 6 V
VCC = 6 V
1.2
1.0
1.1
1.0
0.5
0.9
0.0 2
4
6
8
10
12
14
16
18
0.8 -20
0
20
40
60
80
Supply Voltage VCC (V)
Ambient Temperature TA (C)
6
PS9634,PS9634L
HIGH LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE
15
High Level Supply Current ICCH (mA) Low Level Supply Current ICCL (mA)
LOW LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE
22.5
TA = -20 C
TA
= -20 C
20.0 17.5
+25 C
+25 C +80 C
10
+80 C
15.0 12.5 10.0 7.5 4
5
0 4
6
8
10
12
14
16
18
6
8
10
12
14
16
18
Supply Voltage VCC (V)
Supply Voltege VCC (V)
LOW LEVEL OUTPUT VOLTAGE (O1) vs. OUTPUT CURRENT (O1)
Low Level Output Voltage (O1) VO1L (V)
LOW LEVEL OUTPUT VOLTAGE (O1) vs. AMBIENT TEMPERATURE
Low Level Output Voltage (O1) VO1L (V)
100 VCC = 6 V
0.35 VCC = 6 V 0.30 0.25 0.20 0.15 0.10 0.1 A 0.05 0.00 -20 0 20 40 60 80 0.3 A IO1 = 0.5 A
10-1
10-2
10-3
10-2
10-1
100
Output Current (O1) IO1 (A)
Ambient Temperature TA (C)
LOW LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2)
Low Level Output Voltage (O2) VO2L (V)
LOW LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE
Low Level Output Voltage (O2) VO2L (V)
100 VCC = 6 V
0.5 VCC = 6 V 0.4 IO2 = 0.6 A
10-1
0.3 0.4 A 0.2
10-2
0.1
0.1 A
10-3
10-2
10-1 Output Current (O2) IO2 (A)
100
0.0 -20
0
20
40
60
80
Ambient Temperature TA (C)
7
PS9634,PS9634L
HIGH LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2)
High Level Output Voltage (O2) VO2H (V)
HIGH LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE
High Level Output Voltage (O2) VO2H (V)
5.5
VCC = 6 V
5.3 VCC = 6 V 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 -20 0 20 40 60 80
IO2 = - 0.1 A
5.0
-0.4 A -0.6A
4.5
4.0 0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
Output Current (O2) IO2 (A)
Ambient Temperature TA (C)
PROPAGATION DELAY TIME vs. FORWARD CURRENT
Propagation Delay Time tPLH/tPHL ( s) Propagation Delay Time tPLH/tPHL ( s)
PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE
5.0 4.5 4.0 tPHL 3.5 3.0 2.5 2.0 -20 tPLH VCC = 6 V, IF = 5 mA, RL1 = 5 , RL2 = 10
5 tPLH tPHL 4 TA = +80 C VCC = 6 V, RL1 = 5 , RL2 = 10
3 -20 C 2 0 5 10 15 +25 C 20 25 30
0
20
40
60
80
Forward Current IF (mA)
Ambient Temperature TA (C)
SAFE OPERATING AREA (Tr.1)
10
Output Current (O2) IO2 (A)
5 2 1 IO2 MAX. (DC) 0.5
DC 1 (T
A
IO2 MAX. (Pulse)
10
1 10
0 m
m
s *1
m
s *1
VCC MAX.
s *1
=
DC
s *1
*2
0.2 0.1 0.3 0.5 1
80
C
) *2
2
3
5
10
20 30
Output Voltage (O2) VO2 (V)
*1 One pulse *2 On the epoxy board
Remark The measurement of TYPICAL CHARACTERISTICS are only for reference, not guaranteed.
8
PS9634,PS9634L
TAPING SPECIFICATIONS (in millimeters)
Outline and Dimensions (Tape)
2.00.1 4.00.1
1.750.1
1.550.1
4.30.2
16.00.3 10.30.1
7.50.1
1.550.1 12.00.1
10.40.1
0.3
Tape Direction
PS9634L-E3 PS9634L-E4
Outline and Dimensions (Reel)
2.00.5 13.00.5
R 1.0
21.00.8
80.05.0
330
16.4 +2.0 -0.0
Packing: 1 000 pcs/reel
9
PS9634,PS9634L
RECOMMENDED SOLDERING CONDITIONS
(1) Infrared reflow soldering * Peak reflow temperature * Time of temperature higher than 210 C * Number of reflows * Flux 235 C (package surface temperature) 30 seconds or less Three Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)
Recommended Temperature Profile of Infrared Reflow
Package Surface Temperature T (C)
(heating) to 10 s 235 C (peak temperature) 210 C to 30 s 120 to 160 C 60 to 90 s (preheating)
Time (s)
Caution Please avoid to removed the residual flux by water after the first reflow processes.
Peak temperature 235 C or below
(2) Dip soldering * Temperature * Time * Number of times * Flux 260 C or below (molten solder temperature) 10 seconds or less One Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)
10
PS9634,PS9634L
APPLICATION EXAMPLE OF PHOTOCOUPLER (TO POWER TRANSISTOR MODULE)
VCC
PS9634, PS9634L + VCC 1 8
2 TTL or the like Input VIN 3
7
6 IO
4
5
Power transistor module
VIN
0
t
IO
0 IO1 IO2P
t
Load
11
PS9634,PS9634L
CAUTION
Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
M4 96. 5


▲Up To Search▲   

 
Price & Availability of PS9634L-E4

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X